Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

Ueq	= ([1/3]	$\Sigma_i \Sigma$	jU _{ij} a	$a_i^*a_j^*$	*a _i .a _j .
-----	-----	-------	-------------------	--------------------	--------------	-----------------------------------

	x	у	z	U_{ea}
C(1)	0.1737 (4)	0.7740 (3)	0.22501 (14)	0.0260 (4)
N(2)	0.3005 (4)	0.6605 (2)	0.2426(2)	0.0324 (5)
C(3)	0.2055 (4)	0.5950(2)	0.3148 (2)	0.0245 (5)
N(4)	0.0195 (4)	0.6612(2)	0.35282 (15)	0.0286 (4)
C(5)	-0.0284(3)	0.7733 (3)	0.30110 (14)	0.0242 (4)
N(6)	0.0160 (4)	0.8859 (2)	0.3521 (2)	0.0293 (5)
C(7)	0.2074 (4)	0.9502(2)	0.3173(2)	0.0256 (5)
N(8)	0.3093 (4)	0.8848 (2)	0.24709 (15)	0.0305 (5)
C(9)	-0.1483 (5)	0.6094 (3)	0.4193 (2)	0.0311 (6)
C(10)	-0.1487 (5)	0.9343 (3)	0.4213 (2)	0.0319 (6)
O(11)	0.2733 (3)	0.4921 (2)	0.34124 (13)	0.0316 (4)
O(12)	0.2778 (3)	1.0523 (2)	0.34529 (14)	0.0334 (4)
O(1W)	0.2632 (8)	0.7981 (3)	0.0018 (2)	0.097 (2)

Table 2. Selected geometric parameters (Å, °)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 435 (4)	N(4) - C(5)	1 448 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.400 (2)	C(5) N(6)	1 4 4 2 (2)
$\begin{array}{ccccccc} C(1) & -C(5) & 1.560 (3) & N(6) - C(7) & 1.359 (3) \\ N(2) - C(3) & 1.362 (3) & N(6) - C(10) & 1.445 (3) \\ C(3) - O(11) & 1.235 (3) & C(7) - O(12) & 1.238 (3) \\ C(3) - N(4) & 1.364 (3) & C(7) - N(8) & 1.355 (3) \\ N(4) - C(9) & 1.442 (3) & & & & & & & \\ N(2) - C(1) - N(8) & 114.8 (2) & N(6) - C(5) - N(4) & 114.6 (2) \\ N(2) - C(1) - C(5) & 102.7 (2) & N(6) - C(5) - C(1) & 103.4 (2) \\ N(8) - C(1) - C(5) & 102.6 (2) & N(4) - C(5) - C(1) & 103.5 (2) \\ C(3) - N(2) - C(1) & 113.1 (2) & C(7) - N(6) - C(5) & 112.2 (2) \\ O(11) - C(3) - N(2) & 126.0 (2) & C(5) - N(6) - C(10) & 123.7 (2) \\ O(11) - C(3) - N(4) & 125.3 (2) & C(5) - N(6) - C(10) & 123.3 (2) \\ N(2) - C(3) - N(4) & 108.6 (2) & O(12) - C(7) - N(8) & 125.4 (2) \\ \end{array}$	1.449(3)	C(3) = N(0)	1.445 (5)
$\begin{array}{ccccccc} N(2) - C(3) & 1.362 (3) & N(6) - C(10) & 1.445 (3) \\ C(3) - O(11) & 1.235 (3) & C(7) - O(12) & 1.238 (3) \\ C(3) - N(4) & 1.364 (3) & C(7) - N(8) & 1.355 (3) \\ N(4) - C(9) & 1.442 (3) & & & & \\ N(2) - C(1) - N(8) & 114.8 (2) & N(6) - C(5) - N(4) & 114.6 (2) \\ N(2) - C(1) - C(5) & 102.7 (2) & N(6) - C(5) - C(1) & 103.4 (2) \\ N(3) - C(1) - C(5) & 102.6 (2) & N(4) - C(5) - C(1) & 103.5 (2) \\ C(3) - N(2) - C(1) & 113.1 (2) & C(7) - N(6) - C(5) & 112.2 (2) \\ O(11) - C(3) - N(4) & 126.0 (2) & C(5) - N(6) - C(10) & 123.7 (2) \\ O(11) - C(3) - N(4) & 108.6 (2) & O(12) - C(7) - N(8) & 125.4 (2) \\ \end{array}$	1.560 (3)	N(6)—C(7)	1.359 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.362 (3)	N(6)—C(10)	1.445 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.235 (3)	C(7)-O(12)	1.238 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1.364 (3)	C(7)—N(8)	1.355 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1.442 (3)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	114.8 (2)	N(6)—C(5)—N(4)	114.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102.7 (2)	N(6)—C(5)—C(1)	103.4 (2)
$\begin{array}{cccc} C(3) & - N(2) & - C(1) & 113.1 (2) & C(7) & - N(6) & - C(5) & 112.2 (2 \\ O(11) & - C(3) & - N(2) & 126.0 (2) & C(7) & - N(6) & - C(10) & 123.7 (2 \\ O(11) & - C(3) & - N(4) & 125.3 (2) & C(5) & - N(6) & - C(10) & 123.3 (2 \\ N(2) & - C(3) & - N(4) & 108.6 (2) & O(12) & - C(7) & - N(8) & 125.4 (2 \\ \end{array}$	102.6 (2)	N(4)C(5)C(1)	103.5 (2)
O(11)C(3)N(2) 126.0 (2) C(7)N(6)C(10) 123.7 (2 O(11)C(3)N(4) 125.3 (2) C(5)N(6)C(10) 123.3 (2 N(2)C(3)N(4) 108.6 (2) O(12)C(7)N(8) 125.4 (2	113.1 (2)	C(7)—N(6)—C(5)	112.2 (2)
O(11)— $C(3)$ — $N(4)$ 125.3 (2) $C(5)$ — $N(6)$ — $C(10)$ 123.3 (2) $N(2)$ — $C(3)$ — $N(4)$ 108.6 (2) $O(12)$ — $C(7)$ — $N(8)$ 125.4 (2)	126.0 (2)	C(7)—N(6)—C(10)	123.7 (2)
N(2) - C(3) - N(4) 108.6 (2) $O(12) - C(7) - N(8)$ 125.4 (2)	125.3 (2)	C(5)-N(6)-C(10)	123.3 (2)
	108.6 (2)	O(12)-C(7)-N(8)	125.4 (2)
C(3)-N(4)-C(9) 122.8 (2) O(12)-C(7)-N(6) 125.5 (2	122.8 (2)	O(12)-C(7)-N(6)	125.5 (2)
C(3)-N(4)-C(5) 111.9 (2) N(8)-C(7)-N(6) 109.1 (2	111.9 (2)	N(8)—C(7)—N(6)	109.1 (2)
C(9) = N(4) = C(5) 123 3 (2) $C(7) = N(8) = C(1)$ 112 5 (2)	123.3 (2)	C(7) - N(8) - C(1)	112.5 (2)
C(3) - N(4) - C(9) C(3) - N(4) - C(5) C(9) - N(4) - C(5)		1.435 (4) 1.449 (3) 1.560 (3) 1.362 (3) 1.235 (3) 1.364 (3) 1.442 (3) 114.8 (2) 102.7 (2) 102.6 (2) 112.6 (2) 125.3 (2) 108.6 (2) 122.8 (2) 111.9 (2) 123.3 (2)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Refinement was on F^2 for all reflections except for three lowangle reflections flagged for potential systematic errors.

All H atoms were located in the difference Fourier map. However, the H atoms of the water molecule were included in the refinement only in the riding-model approximation. Symmetry equivalents were measured for only several hundred high-order and, therefore, weak reflections, which account for the high value of R_{int} .

Program(s) used to solve structure: *SHELXTL-Plus* (Sheldrick, 1987). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1080). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. pp. S1-S19.
- Boileau, J., Wimmer, E., Gilardi, R., Stinecipher, M. M., Gallo, R. & Pierrot, M. (1988). Acta Cryst. C44, 696–699.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Himes, V. L., Hubbard, C. R., Mighell, A. D. & Fatiadi, A. J. (1978). Acta Cryst. B34, 3102–3104.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved Nematollahi, J. & Ketcham, R. (1963). J. Org. Chem. 28, 2378-2380.

- Pletnev, V. Z., Mikhailova, I. Yu., Sobolev, A. N., Galitskii, N. M., Verenich, A. I., Khmelnitsky, L. I., Lebedev, O. V., Kravchenko, A. N. & Suvorova, L. I. (1993). Bioorg. Khim. 19, 671-681.
- Sheldrick, G. M. (1987). SHELXTL-Plus. PC version. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.
- Suvorova, L. I., Yeres'ko, V. A., Yepishina, L. V., Lebedev, O. V. & Khmelnitsky, L. I. (1979). *Izv. Akad. Nauk SSSR Ser. Khim.* pp. 1079–1085.

Acta Cryst. (1994). C50, 2058-2060

Redetermination of the Structure of *N*-Carbamyl-D,L-aspartic Acid

EVAN S. ZVARGULIS AND TREVOR W. HAMBLEY

Department of Inorganic Chemistry, University of Sydney, NSW 2006, Australia

(Received 21 December 1993; accepted 13 June 1994)

Abstract

The structure of the free acid form of *N*-carbamyl-D,L-aspartate, $C_5H_8N_2O_5$, has been redetermined. There are substantial differences between the conformation of the free acid form and the deprotonated form of *N*-carbamyl-L-aspartate. Detailed comparison with the structure of L-dihydroorotate shows that cyclization of *N*-carbamyl-L-aspartate results in only two significant changes in bond lengths and does not cause substantial stress.

Comment

The enzyme dihydroorotase catalyses the conversion of N-carbamyl-L-aspartate to L-dihydroorotate, which is the third reaction of the denovo pathway for pyrimidine nucleotide biosynthesis (Christopherson & Jones, 1980). It has been shown that the active site of this enzyme contains a Zn atom (Christopherson & Jones, 1980) and we have been studying zinc complexes of natural substrates and inhibitors of dihydroorotase. Crystals of N-carbamyl-D,L-aspartic acid were obtained as a byproduct of an attempt to grow crystals of a zinc complex of N-carbamyl-D,L-aspartate. The structures of this acid form of *N*-carbamyl-D,L-aspartate (Jagannatha Rao, Krishna Murthy, Appaji Rao & Vijayan, 1982) and of the dicyclohexylammonium salt of N-carbamylL-aspartate (Zanotti, Monaco & Foote, 1984) have been reported previously. Both of these determinations were relatively imprecise (R = 0.095 and 0.10, respectively) and therefore detailed comparison of bond lengths with those in the present structure is inappropriate. There is a significant difference in the conformations of the free acid and deprotonated forms. In the acid form the carboxylate groups are cis [64.4 $(1)^{\circ}$] with respect to one another and in the anionic form they are trans (174°). Conversely, in the acid form carboxylate group 1 [C(1),O(1),O(2)] is trans $[166.9 (1)^{\circ}]$ to the carbonyl group and in the anionic form it is cis (-62°). In all other respects the conformations are similar so the difference is best described as a rotation by approximately 60° about the C(2)—C(3) bond.

There are a number of strong intermolecular hydrogen bonds involving the carboxylate and amine groups. There is also a close intramolecular contact between O(2) and N(1)—HN(1) [2.644 (2) and 2.26 (2) Å]. It is unlikely that this interaction is a hydrogen bond, but it is an attractive interaction and probably stabilizes the near zero O(2)—C(1)—C(2)—N(1) torsion angle [4.5 (2)°].

As part of a study of the natural substrates and inhibitors of the enzyme dihydroorotase we have recently reported the structure of the methyl ester of L-dihydroorotate (Hambley, Phillips, Poiner & Christopherson, 1993). Since dihydrorotase converts N-carbamyl-L-aspartate to L-dihydroorotate, it is of interest to compare in detail bond lengths and angles in these two compounds. Cyclization is achieved by the formation of a bond between N(2) and C(4) with the elimination of a water molecule. Only two of the existing bonds are significantly altered by this cyclization; C(5)—N(2) lengthens from 1.340(2) to 1.375 (7) Å and C(5)-O(5) shortens from 1.257 (2) to 1.233 (6) Å. The changes correspond to movement of electron density from N(2) away from the bond with C(5) and into the newly formed bond, and a concomitant increase in the electron density of the C(5)—O(5) bond. The largest change in the intraring angles is 2.3° ; the angle at N(1) decreases by 1.9° and that at C(3) increases by 2.3° on ring closure. Thus, it appears that little stress arises from ring closure.

Fig. 1. ORTEP (Johnson, 1965) plot of N-carbamyl-D,L-aspartic acid, showing atomic labels (30% displacement ellipsoids).

Experimental

N-Carbamyl-DL-aspartic acid $(2.85 \times 10^{-4} \text{ mol})$ was dissolved in 8 ml of water and was added to a suspension of zinc hydroxide hydrate $(1.40 \times 10^{-4} \text{ mol})$ made up in 8 ml of water. Crystals were grown by slow evaporation of this solution.

Crystal data

$C_5H_8N_2O_5$	$D_x = 1.635 \text{ Mg m}^{-3}$
$M_r = 176.13$	Mo $K\alpha$ radiation
Triclinic	$\lambda = 0.71069 \text{ Å}$
$P\overline{1}$	Cell parameters from 25
a = 6.443 (2) Å	reflections
b = 7.476 (2) Å	$\theta = 8 - 12^{\circ}$
c = 8.058 (3) Å	$\mu = 1.40 \text{ mm}^{-1}$
$\alpha = 72.27 (2)^{\circ}$	T = 294 K
$\beta = 80.82 (3)^{\circ}$	Triangular plate
$\gamma = 76.23 (2)^{\circ}$	$0.12 \times 0.11 \times 0.10$ mm
V = 357.5 (1) Å ³	Colourless
Z = 2	

Data collection

Enraf–Nonius CAD-4	$R_{\rm int} = 0.018$
diffractometer	$\theta_{\rm max} = 25^{\circ}$
$\omega/2\theta$ scans	$h = -10 \rightarrow 10$
Absorption correction:	$k = -12 \rightarrow 12$
none	$l = 0 \rightarrow 16$
1348 measured reflections	3 standard reflections
1212 independent reflections	frequency: 60 min
1141 observed reflections	intensity variation: <1%
$[l > 2.5\sigma(l)]$	

Refinement

$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$ Atomic scattering factors from <i>SHELX</i> 76 (Sheldrick, 1976)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$B_{\rm eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	v	Z	B_{eq}
C(1)	0.3036(2)	0.3502 (2)	0.2914 (2)	1.97 (5)
C(2)	0.3155 (2)	0.5610(2)	0.2333 (2)	1.96 (5)
C(3)	0.1632 (2)	0.6782 (2)	0.0922 (2)	2.19 (5)
C(4)	-0.0667 (2)	0.6786(2)	0.1626 (2)	2.02 (5)
C(5)	0.3043 (2)	0.7979 (2)	0.3887 (2)	1.93 (5)
0(1)	0.3615 (2)	0.2707 (2)	0.1624(1)	2.96 (5)
O (2)	0.2490 (2)	0.2673 (1)	0.4401 (1)	2.67 (5)
0(3)	-0.1363(2)	0.5334(1)	0.2339(1)	2.59 (5)
O(4)	-0.1865 (2)	0.8513 (2)	0.1405 (2)	3.21 (5)
Q(5)	0.3954 (2)	0.9005(1)	0.2571 (1)	2.35 (5)
N(I)	0.2684 (2)	0.6299 (2)	0.3871 (2)	2.19 (5)
N(2)	0.2402 (2)	0.8508 (2)	0.5364 (2)	2.75 (5)
HO(1)	0.360(3)	0.146 (3)	0.201 (3)	6(1)
HO(4)	-0.315 (3)	0.841 (3)	0.184 (3)	5(1)

Table 2. Selected geometric parameters (Å, °)

		rectified and the second secon	
C(2) - C(1)	1.518 (2)	O(1) - C(1)	1.312 (2)
O(2) - C(1)	1.208 (2)	C(3)—C(2)	1.537 (2)
N(1) - C(2)	1.446 (2)	C(4)—C(3)	1.499 (2)
O(3) - C(4)	1.217 (2)	O(4)—C(4)	1.313 (2)
O(5)—C(5)	1.257 (2)	N(1)-C(5)	1.334 (2)
N(2)—C(5)	1.340 (2)		
O(1) - C(1) - C(2)	112.0(1)	O(2)—C(1)—C(2)	123.2 (1)
O(2) - C(1) - O(1)	124.8(1)	C(3) - C(2) - C(1)	112.1 (1)
N(1) - C(2) - C(1)	107.6(1)	N(1) - C(2) - C(3)	111.9(1)
C(4) - C(3) - C(2)	111.2(1)	O(3) - C(4) - C(3)	123.5 (1)
O(4) - C(4) - C(3)	113.5(1)	O(4)-C(4)-O(3)	123.0(1)
N(1)-C(5)-O(5)	121.0(1)	N(2)-C(5)-O(5)	121.9 (1)
N(2)-C(5)-N(1)	117.1 (1)	C(5)N(1)C(2)	123.1 (1)

Lorentz and polarization corrections were applied using the SDP system (Frenz, 1985). The structure was solved by direct methods using SHELXS86 (Sheldrick, 1985). Refinement was performed by full-matrix least-squares methods using SHELX76 (Sheldrick, 1976). Non-H atoms were refined anisotropically and H atoms were located in the difference maps and refined isotropically. Graphics were obtained using ORTEP (Johnson, 1965).

We wish to thank the Australian Research Council for financial support of this work.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and non-bonded interactions have been deposited with the IUCr (Reference: OH1065). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

$C_5H_8N_2O_5$

References

- Christopherson, R. I. & Jones, M. E. (1980). J. Biol. Chem. 255, 3358-3370.
- Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- Hambley, T. W., Phillips, L., Poiner, A. C. & Christopherson, R. I. (1993). Acta Cryst. B49, 130-136.
- Jagannatha Rao, G. S., Krishna Murthy, H. M., Appaji Rao, N. & Vijayan, M. (1982). Acta Cryst. B38, 1672-1674.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175-189. Oxford Univ. Press.
- Zanotti, G., Monaco, H. & Foote, J. (1984). J. Am. Chem. Soc. 106, 7900-7904.

Acta Cryst. (1994). C50, 2060-2064

30-Dechloro-30-methoxy-25-*O*-methyl-*N*-methylnaphthomycin A

LUCIANO CELLAI, SILVIO CERRINI AND DORIANO LAMBA

Istituto di Strutturistica Chimica 'G. Giacomello', CNR, CP 10, I-00016 Monterotondo Stazione, Roma, Italy

MARIA CRISTINA BURLA

Dipartimento Scienze della Terra, Universitá di Perugia, I-06100 Perugia, Italy

Mario Brufani

Dipartimento di Scienze Biochimiche, Universitá di Roma, I-00185 Roma, Italy

WALTER FEDELI

Dipartimento di Chimica, Ingegneria Chimica e dei Materiali, Universitá dell'Aquila, I-67100 L'Aquila, Italy

WALTER KELLER-SCHIERLEIN

Laboratorium fur Organische Chemie, Eidgenossiche Technische Hochschule, CH-8092 Zürich, Switzerland

(Received 17 February 1994; accepted 11 July 1994)

Abstract

The reaction of naphthomycin A with methyl iodide gives the title compound as the major product.